Quasiconformal distortion of projective transformations and discrete conformal maps

نویسندگان

  • Stefan Born
  • Ulrike Bücking
  • Boris Springborn
چکیده

We consider the quasiconformal dilatation of projective transformations of the real projective plane. For non-affine transformations, the contour lines of dilatation form a hyperbolic pencil of circles, and these are the only circles that are mapped to circles. We apply this result to analyze the dilatation of the circumcircle preserving piecewise projective interpolation between discretely conformally equivalent triangulations. We show that another interpolation scheme, angle bisector preserving piecewise projective interpolation, is in a sense optimal with respect to dilatation. These two interpolation schemes belong to a one-parameter family.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Extremal Quasiconformal Maps

Conformal maps are widely used in geometry processing applications. They are smooth, preserve angles, and are locally injective by construction. However, conformal maps do not allow for boundary positions to be prescribed. A natural extension to the space of conformal maps is the richer space of quasiconformal maps of bounded conformal distortion. Extremal quasiconformal maps, that is, maps min...

متن کامل

Computation of Quasi-Conformal Surface Maps Using Discrete Beltrami Flow

The manipulation of surface homeomorphisms is an important aspect in 3D modeling and surface processing. Every homeomorphic surface map can be considered as a quasiconformal map, with its local non-conformal distortion given by its Beltrami differential. As a generalization of conformal maps, quasiconformal maps are of great interest in mathematical study and real applications. Efficient and ac...

متن کامل

Cortical Surface Flattening: a Discrete Conformal Approach Using Circle Packings

The locations and patterns of functional brain activity in humans are difficult to compare across subjects because of individual differences in cortical folding and the fact that functional foci are often buried within cortical sulci. Cortical flat mapping is a tool which can address these problems by taking advantage of the two-dimensional sheet topology of the cortical surface. Flat mappings ...

متن کامل

Geometric Properties of Quasiconformal Maps and Special Functions

Our goal is to provide a survey of some topics in quasiconformal analysis of current interest. We try to emphasize ideas and leave proofs and technicalities aside. Several easily stated open problems are given. Most of the results are joint work with several coauthors. In particular, we adopt results from the book authored by Anderson-Vamanamurthy-Vuorinen [AVV6]. Part 1. Quasiconformal maps an...

متن کامل

Local distortion of M-conformal mappings

A conformal mapping in a plane domain locally maps circles to circles. More generally, quasiconformal mappings locally map circles to ellipses of bounded distortion. In this work, we study the corresponding situation for solutions to Stein-Weiss systems in the (n + 1)D Euclidean space. This class of solutions coincides with the subset of monogenic quasiconformal mappings with nonvanishing hyper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2017